
The 31st Nordic Mathematical Contest

Monday, 3 April 2017

Solutions

Problem 1 Let n be a positive integer. Show that there exist positive integers a and b
such that:

a2 + a+ 1

b2 + b+ 1
= n2 + n+ 1.

Solution 1 Let P (x) = x2 + x+1. We have P (n)P (n+1) = (n2 + n+1)(n2 +3n+3) =
n4 + 4n3 + 7n2 + 6n + 3. Also, P ((n + 1)2) = n4 + 4n3 + 7n2 + 6n + 3. By choosing
a = (n+ 1)2 and b = n+ 1 we get P (a)/P (b) = P (n) as desired.

Problem 2 Let a, b, α, β be real numbers such that 0 ≤ a, b ≤ 1, and 0 ≤ α, β ≤ π
2
. Show

that if
ab cos(α− β) ≤

√
(1− a2)(1− b2),

then
a cosα + b sin β ≤ 1 + ab sin(β − α).

Solution 2 The condition can be rewritten as

ab cos (α− β) = ab cosα cos β + ab sinα sin β ≤
√

(1− a2)(1− b2).

Set x = a cosα, y = b sin β, z = b cos β, t = a sinα. We can now rewrite the condition as

xz + yt ≤
√

(1− x2 − t2)(1− y2 − z2),

whereas the inequality we need to prove now looks like

x+ y ≤ 1 + xy − zt.

Since x, y, z, t ≥ 0, and 1 + xy − zt = 1 + ab sin (β − α) ≥ 0, we can square both sides
of both inequalities, and get equivalent ones. After a couple of cancelations the condition
yields

2xyzt ≤ 1− x2 − y2 − z2 − t2 + x2y2 + z2t2,

so that
x2 + y2 + z2 + t2 ≤ (xy − zt)2 + 1,



which is equivalent to

x2 + y2 + z2 + t2 + 2xy − 2zt ≤ (1 + xy − zt)2,
or

(x+ y)2 + (z − t)2 ≤ (1 + xy − zt)2.
Since (x+ y)2 ≤ (x+ y)2 + (z − t)2, the desired inequality follows.

Problem 3 Let M and N be the midpoints of the sides AC and AB, respectively, of
an acute triangle ABC, AB 6= AC. Let ωB be the circle centered at M passing through
B, and let ωC be the circle centered at N passing through C. Let the point D be such
that ABCD is an isosceles trapezoid with AD parallel to BC. Assume that ωB and ωC
intersect in two distinct points P and Q. Show that D lies on the line PQ.

Solution 3 Let E be such that ABEC is a parallelogram with AB ‖ CE and AC ‖ BE,
and let ω be the circumscribed circle of 4ABC with centre O.

It is known that the radical axis of two circles is perpendicular to the line connecting
the two centres. Since BE ⊥ MO and CE ⊥ NO, this means that BE and CE are the
radical axes of ω and ωB, and of ω and ωC , respectively, so E is the radical centre of ω,
ωB, and ωC .

Now as BE = AC = BD and CE = AB = CD we find that BC is the perpendicular
bisector of DE. Most importantly we have DE ⊥ BC. Denote by t the radical axis of ωB
and ωC , i.e. t = PQ. Then since t ⊥ MN we find that t and DE are parallel. Therefore
since E lies on t we get that D also lies on t.
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Alternative solution Reflect B across M to a point B′ forming a parallelogram
ABCB′. Then B′ lies on ωB diagonally opposite B, and since AB′ ‖ BC it lies on
AD. Similarly reflect C across N to a point C ′, which satisfies analogous properties. Note
that CB′ = AB = CD, so we find that triangle CDB′ and similarly triangle BDC ′ are
isosceles.

Let B′′ and C ′′ be the orthogonal projections of B and C onto AD. Since BB′ is a
diameter of ωB we get that B′′ lies on ωB, and similarly C ′′ lies on ωC . Moreover BB′′ is
an altitude of the isosceles triangle BDC ′ with BD = BC ′, hence it coincides with the
median from B, so B′′ is in fact the midpoint of DC ′. Similarly C ′′ is the midpoint of
DB′. From this we get

2 =
DC ′

DB′′ =
DB′

DC ′′

which rearranges as DC ′ · DC ′′ = DB′ · DB′′. This means that D has same the power
with respect to ωB and ωC , hence it lies on their radical axis PQ.

Problem 4 Find all integers n and m, n > m > 2, and such that a regular n-sided
polygon can be inscribed in a regular m-sided polygon so that all the vertices of the n-gon
lie on the sides of the m-gon.

Solution 4 It works only for n = 2m, and for m = 3 and n = 4.
To begin with let’s see why it works for n = 2m. For a 2m-gon we can choose two

points on each side, symmetrically, so that the distance between the two of them is equal
to the distance between two close points on adjacent sides.

For n = 4 and m = 3 we need to inscribe a square in an equilateral triangle, by
choosing two vertices of the square symmetrically on one of the sides of the triangle. It
is easy to calculate the side length of the square so that its remaining two vertices lie on
the remaining two sides of the triangle.

We need to show that it cannot be done in any other way. One side of the m-gon
can contain at most two of the vertices of the n-gon, so that n ≤ 2m. For n ≥ m + 2 at
least two of the sides of the m-gon must contain two of the vertices of the n-gon each. By
symmetry the midpoints, and thus the perpendicular bisectors, of such a side of them-gon
and of the side of the n-gon it contains must coincide. If two such sides of the m-gon are
not opposite to each other the corresponding perpendicular bisectors will intersect, and
we can deduce that the centres of the circumscribed circles of the m-gon and of the n-gon
must coincide. If two such sides are opposite, then the centres of the circumscribed circles
will coincide with the midpoint of the segment between the midpoints of the sides, and
thus the two circumscribed circles will once again have the same centre.

Denote the radii of the two circumscribed circles by R and r, where R > r. The
smaller circle intersects the sides of the m-gon at 2m points, among which are the possible
vertices for the n-gon. Denote these points by P1, P2, . . . , P2m clockwise, where P1 and P2
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are vertices of the n-gon. If the side length of the n-gon is s, we now have |P1P2| = s, and
thus |P3P4| = s. If only one of the points P3 and P4 is a vertex in the n-gon, it would have
to be P4, but the distance between P2 and P4 is greater than s, which means P2P4 cannot
be a side. We can now deduce that both P3 and P4 are vertices of the n-gon, and by
symmetry all the 2m points of intersection will be vertices of the n-gon, so that n = 2m.

We now need to handle the case n = m + 1 > 4. Denote the vertices of the m-gon
by Q1, Q2, . . . , Qm clockwise. Now only one of the sides of the m-gon contains two of
the vertices of the n-gon, let this side be QmQ1. Denote the vertices of the (m + 1)-gon
by P1, P2, . . . , Pm+1 clockwise, where P1 and Pm+1 lie on the side QmQ1 of the m-gon.
Let α = π − 2π/(m + 1), and β = π − 2π/m be the angles of the n-gon and the m-
gon, respectively. We now get a number of triangles P1Q1P2, P2Q2P3,. . .PmQmPm+1. We
begin by establishing a connection between the sizes of the angles. To begin with we have
∠Q1P1P2 = π− α, and ∠P1Q1P2 = β, so that ∠P1P2Q1 = α− β. We now proceed to get
∠Q2P2P3 = π − α − (α − β), and ∠P2Q2P3 = β, which gives ∠P2P3Q2 = 2(α − β), and
so on. If now γ = α − β = 2π/m(m + 1), we have ∠PkPk+1Qk = kγ, and ∠QkPkPk+1 =
(m+ 1− k)γ for k = 1, 2, . . . ,m.

Since s is the side length of the n-gon, i.e. s = |P1P2| = |P1P2| = · · · = |Pm+1P1|,
according to the law of sines we get

s

sin β
=

|PkQk|
sin(PkPk+1Qk)

=
|QkPk+1|

sin(QkPkPk+1)
,

i.e.
s

sin β
=
|PkQk|
sin(kγ)

=
|QkPk+1|

sin((m+ 1− k)γ)
.

Since |QkQk+1| = |QkPk+1|+ |Pk+1Qk+1|, we get

sin((k + 1)γ) + sin((m+ 1− k)γ) = σ sin β

s

where σ = |Q1Q2| = |Q2Q3| = · · · = |QmQ1| is the side length of the m-gon.
Using the above for k = 1 and k = 2, we get

sin 2γ + sinmγ = sin 3γ + sin(m− 1)γ.

For m ≥ 4 the angles 3γ and (m−1)γ are both in the interval between 2γ and mγ, which
means we can’t have equality as the sine function is concave (convex from above) in the
interval [0, π/2]. We therefore deduce that it is impossible to inscribe an (m + 1)-gon in
an m-gon for m ≥ 4.
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