Version: English

34th Nordic Mathematical Contest
Solutions

Problems

1. For a positive integer n, denote by g(n) the number of strictly ascending triples chosen
from the set {1,2,...,n}. Find the least positive integer n such that the following holds:
The number g(n) can be written as the product of three different prime numbers which
form an arithmetic progression with common difference 336.

2. Georg has 2n + 1 cards with one number written on each card. On one card the integer 0
is written, and among the rest of the cards, the integers k = 1,...,n appear, each twice.
Georg wants to place the cards in a row in such a way that the 0-card is in the middle,
and for each k = 1,... n, the two cards with the number k have the distance k£ (meaning
that there are exactly k — 1 cards between them).

For which 1 < n < 10 is this possible?

3. Each of the sides AB and C'D of a convex quadrilateral ABC'D is divided into three equal
parts, |AE| = |EF| = |FB|, |DP| = |PQ| = |QC|. The diagonals of AEPD and FBCQ
intersect at M and N, respectively. Prove that the sum of the areas of AAM D and ABNC
is equal to the sum of the areas of AEPM and AFNQ.

4. Find all functions f: R\ {—1} — R such that

oo (12) - (52)

for all z,y € R that satisfy (x 4+ 1)(y + 1)(zy + 1) # 0.

Solutions

These are mainly written as provided by proposers.

Problem 1

Antalet sadana talfoljder ar (g), eftersom foljden bestédms entydigt av de tre tal som ingar i
den.

Om (g) ar produkten av tre skilda primtal maste n vara udda (annars innehaller n,n —1,n—2

for manga faktorer 2), och vi har tre olika moéjligheter (dér p; &r olika primtal):
Fall 1: n =py, (n — 1) = 6py och (n —2) = ps.

Fall 2a: n = 3py, (n — 1) = 2py och (n — 2) = p;.



Fall 2b: n = py, (n — 1) = 2py och (n — 2) = 3ps.

I fall 1 &r p; — p3 = 2, sa dessa tal kan omojligtvis ingé i en aritmetisk talfoljd med steglangd
336.

[ fall 2a far vipy = %, p» = 2L och p3 = n — 2. Den minsta differensen héir &r p, — p; =

"T’l -2 = %3 och som optimist?er s hoppas vi pa att detta steg ar 1-336 och inte mer (vilket
ar teoretiskt minimum). Vi far da 6 - 336 = n — 3, vilket ger n = 2019, och det visar sig da att
steget vidare till n — 2 ar 4 - 336. Har kan man misstédnka att detta &r det ratta svaret, och det
ar darfor modan vért att kolla om 2019/3 = 673, 2018/2 = 1009 och 2017 &ar primtal, vilket
medfor lite jobb, men inte sa farligt mycket. Varst ér att kolla 2017, vilket innebér koll mot

primtalen 2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43.

Det kvarstar att kontrollera om fall 2b kan ge ett mindre n. Hér dr den minsta differensen

Pa—p3 = "T_l — ”T_Q = "T“, och vi hoppas aterigen pa att detta ar 1-336, vilket ger 6-336 = n+1

vilket ger n = 2015, men det ar ju delbart med 5, vilket utesluter att (20315) kan skrivas som en
produkt av exakt tre primtal.

Problem 2

Let the positions be enumerated from —n to n, and let a; and a, — k be the positions of the
two cards with the number k. By symmetry around 0, we get that

n n 1
O:Z(ak+ak—k):22ak—w.
k=1 k=1 2

It follows that either n or n + 1 is divisible by 4, id est
n € {3,4,7,8}.

The following shows that each value is also possible
2320311
242304311

034735406272116
68571165087423243

Problem 3

Denote by T(XY Z) the surface area of AXY Z (similarly for quadrilaterals). First we note
the identical areas of triangles

T(EFP) = T(AEP),

T(PFQ) = T(QFC),

T(EFQ) = T(FBQ) and

T(EQP) = T(EPD) (1)

The sum of the first two line gives

T(EFQP) = T(AEP) + T(QFC)



and the third and fourth line give
T(EFQP)=T(FBQ)+T(EDP). (2)
The sum of the last two lines can be written in a way that is close to the statement of the
problem
2T(EFQP)=T(AEPD)+T(EPM)—-T(AMD)+T(FBCQ)+T(FNQ)—T(BNC).
This means the problem is equivalent to showing

2T(EFQP) = T(AEPD) + T(FBCQ) (3)

[If student gets this far, the solution is worth four points.]

The area of quadrilateral is half the magnitude of the cross product of its diagonals. Letting
I — )
t = FA+ DP we can write for the three cross products

OT(AEPD) = AP x ED,
OT(EFQP) = EQ x FP = (AP + 1) x (ED + 1) = AP x FP+{x ED + AP x 1,
OT(FBCQ) = FC x BO = (AP +2t) x (ED +2t) = AP x ED + 2 x ED + 2AP x {

from which the result follows.

Problem 4

Setting y = 1 we obtain
fx)f (f(0)) = f(1)

If £(f(0)) # 0 we can divide and obtain that f(z) = ¢ for some ¢ € R. The only such solutions
are f(z) =0 and f(z) = 1. So we can assume f(f(0)) = f(1) = 0.

Setting x = y = 0 we see that f(0)f(f(1)) = f(0)2 = f(0) = f(0) =0 or 1.

1—
If £(0) =0 we can set x =0 and get f(y) = f(0)f (f (%)) = 0.
Y
Therefore we can assume f(0) =1 and get

f@(}ig))zf@> @

Substituting this back into the original equation we obtain

ot = (222 5)
Substituting z = 1 ;z into (4)
FeE =1 (1) ©)



We will now prove the lemma that f(z) =0 < = 1. We know f(1) =0, so assume f(a) =0
for some a # 1. Then by (5),

f(525) = f@f@ =0 Vo eR\{-1,—2)

ra+1
If » = — ra , then z = 0 S0z can take any value in R \ {—1, 1} because
ra + az — “

r=—-1el-az=a—2z<(a—1)(2+1)=0<1=0

By setting z =y = % in (5) we obtain

) 1) () - o

So f (%) = 0 which means that f(z) =0 Vz € R\ {—1}, which contradicts our assumptions.

Now we will show that f(a) = f(b) = a =bV a = }. Assume that a # b and f(a) = f(b). We
know that f(b) # 0 by the lemma. By setting z = —y = b in (5) we get

1

fO)f(=0) = f(0) =1« 0 f(=b).
Therefore if a # 3, we can use (5) and (6) to get
] a—>b
~ )= (L) 2 b)) = o—b\\ | 1-ab
o= =1 (5d) = rurco =1 (1 (1=5)) -7 —
1—ab
So by the lemma:
] a—>b
ﬂ—l = (1—ab)—a+b=(1-ab)+a—-b = a=Db
—7 - -
1+ —
1—ab
Combining this result with (6), we see that for each € R\ {—1} we have
1—2 1+
flo) =1 v )=
Suppose that Jec ¢ {1,0,—1} such that d = f(c) = 1 i—z Then
1—-c 1
f@ = 1@ = (=) =r(5) =

s =1 (55) = s (3) = £ () = £ (255

d
ranges over all of R\ {—1, }i}, giving us that f(z) = f(%)

As before, the substitution z = *
xd+1

1
for all z € R\ {—1}. This means in particular that f(%) = f(c) = : ¢ But this value is
—c
1 1-1 1—
neither £ nor = £ leading to a contradiction. Therefore we must have that f(z) = = -
_1 1 x

for all z € R\ {—1}, which indeed is our final solution.



