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Problem 1
Let T (a) be the sum of digits of a. For which positive integers R does there exist a positive
integer n such that T (n2)

T (n)
= R?

Solution
All positive integers R.
Let R be a positive integer and consider the number

N =
R−1∑
k=0

102
k

.

We see that T (N) = R. Now

N2 =

(
R−1∑
k=0

102
k

)2

=
∑

0≤a,b<R

102
a+2b ,

and since 2a + 2b = 2c + 2d if and only if (a, b) = (c, d) or (a, b) = (d, c), there is never a carry
in the summation

∑
0≤a,b<R 102

a+2b , and we can write

T (N2) =
∑

0≤a,b<R

T (102
a+2b)

= R2.

So T (n2)
T (n)

= R.
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Problem 2
Let Q1 be a quadrilateral such that the midpoints of its sides lie on a circle. Prove that there
exists a cyclic quadrilateral Q2 with the same sidelengths as Q1, such that two of the angles in
Q2 are equal.

Solution
Let A,B,C and D be the vertices of Q1, and K, L, M and N be the midpoints of the sides
AB, BC, CD and DA , respectively.
We have KL ∥ AC ∥ MN and LM ∥ BD ∥ NK, and thus KLMN is a parallelogram. From
the problem condition it is known that KLMN is cyclic, and thus, from the inscribed angle
theorem, KLMN must be a rectangle. Hence, AC ⊥ BD. Now, let P denote the intersections
of the diagonals of ABCD.

A

N

D

B

K

C

M

P

L

Applying Pythagoras’ theorem repeatedly therefore yields

|AB|2 + |CD|2 = |AP |2 + |BP |2 + |CP |2 + |DP |2 = |AD|2 + |BC|2.

Thus, we can construct the quadrilateral Q2 with a segment A′C ′ satisfying |A′C ′|2 = |AB|2 +
|CD|2, and then place B′, D′ on the circle with diameter A′C ′ on opposite sides of A′C ′ such
that |A′B′| = |AB| and |A′D′| = |AD|.
From the previous computation, we then obtain |C ′B′| = |CD| and |C ′D′| = |BC|. Hence, Q2

and Q1 has the same set of sidelengths. Finally, A′B′ ⊥ B′C ′ and A′D′ ⊥ D′C ′, so Q2 has two
identical right angels.
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Problem 3
Find all functions f : R → R such that

f(f(x)f(y) + y) = f(x)y + f(y − x+ 1) (3.1)

for all x, y ∈ R.

Solution
First note that f satisfies the functional equation if and only if −f does as well. We can
therefore assume that f(0) ≥ 0. We consider two cases, depending on whether f is injective or
not.

1. First assume that f is not injective. Then there exist a, t ∈ R, t ̸= 0 such that f(a+ t) =
f(a). Apply the substitutions x 7→ a, y 7→ y and x 7→ a + t, y 7→ y to the functional
equation (3.1). This gives:

f(y − a+ 1) = f(f(a)f(y) + y)− f(a)y

and
f(y − a− t+ 1) = f(f(a+ t)f(y) + y)− f(a+ t)y.

As f(a+ t) = f(a) the right hand sides of the equations are equal to one another. Hence

f(y − a+ 1) = f(y − a− t+ 1). (3.2)

Applying the substitution y 7→ x+ a+ t− 1 to equation (3.2) yields:

f(x+ t) = f(x). (3.3)

In other words f is t-periodic. Perform the substitution x 7→ x and y 7→ y+ t to equation
(3.1). The result is

f(f(x)f(y + t) + y + t) = f(x)(y + t) = f(y + t− x+ 1). (3.4)

As f is t-periodic we have f(y + t) = f(y), f(f(x)f(y) + y + t) = f(f(x)f(y) + y) and
f(y + t− x+ 1) = f(y − x+ 1). As a result equation (3.4) simplifies to

f(f(x)f(y) + y) = f(x)(y + t) + f(y − x+ 1). (3.5)

By comparing equation (3.5) with the given equation (3.1) we get

f(x)y = f(x)(y + t).

As t ̸= 0 it follows that f(x) = 0. That is f is the zero function.

2. Next assume that f is injective. Apply the substitution x 7→ x and y 7→ 0 to the functional
equation (3.1). This gives

f(f(x)f(0)) = f(−x+ 1).

As f injective, the arguments must equate, that is

f(x)f(0) = 1− x. (3.6)

Evaluation this equation at x = 0 gives (f(0))2 = 1, that is f(0) = 1 as we assumed that
f(0) ≥ 0. Equation (3.6) simplifies to

f(x) = 1− x. (3.7)
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It remains to verify that the candidates f(x) = 0 and f(x) = 1− x are in fact solution to the
functional equation. Routine calculation show that this is the case. We have hence found that
the complete collection of solutions to the functional equation is

f : R −→ R, x 7−→ 0, f : R −→ R, x 7−→ x− 1 and f : R −→ R, x 7−→ 1− x.
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Problem 4
Alice and Bob are playing a game. First, Alice chooses a partition C of the positive integers
into a (not necessarily finite) set of sets, such that each positive integer is in exactly one of the
sets in C. Then Bob does the following operation a finite number of times.
Choose a set S ∈ C not previously chosen, and let D be the set of all positive integers dividing
at least one element in S. Then add the set D \ S (possibly the empty set) to C.
Bob wins if there are two equal sets in C after he has done all his moves, otherwise, Alice wins.
Determine which player has a winning strategy.

Answer: Alice has a winning strategy.

Solution 1
We will use the following notation. If S ⊆ Z+ is a subset of the positive integers and D is

defined as in the problem statement, define d(S) = D \ S. In addition, the d-sequence of S,
written {dS}n∈Z+ , is defined recursively as dS0 = S, and dSn+1 = d(dSn) for each n ∈ Z+.
Let p1, p2, . . . be an enumeration of all the prime numbers. Alice chooses the sets

A = {pnm | n ≡ m mod 3, 0 < n ≤ m}, B = {pnm | n ≡ m− 1 mod 3, 0 < n ≤ m− 1}

and
C = Z+ \ (A ∪B).

It is clear that each positive integer belongs to exactly on of the sets A, B or C. By induction
we readily get that

dk(A) =

{
{pnm | n ≡ m mod 3, n ≤ m− 3k/2} if k is even and k ̸= 0

{pnm | n ̸≡ m mod 3, n ≤ m− 1− 3(k − 1)/2} if k is odd.

and

dk(B) =

{
{pnm | n ≡ m− 1 mod 3, n ≤ m− 1− 3k/2} if k is even and k ̸= 0

{pnm | n ̸≡ m− 1 mod 3, n ≤ m− 2− 3(k − 1)/2} if k is odd.

If m ∈ Z+ then 6m is definitely in C as 6m is not a power of a prime. This means that all
positive integers divide at least one number in C. It follows that

d(C) = Z+ \ C = Z+ \ (Z+ \ (A ∪B)) = A ∪B = {pnm | n ̸≡ m− 2 mod 3, 0 < n ≤ m}

By induction it follows that

dk(C) =

{
{pnm | n ≡ m− 2 mod 3, 0 < n ≤ m− 2− 3k/2} if k is even and k ̸= 0

{pnm | n ̸≡ m− 2 mod 3, n ≤ m− 3− 3(k − 1)/2} if k is odd and k ̸= 1.

From this it is clear that all of the sets dk(M) are all distinct. Hence Bob can never create the
same set in two different ways.
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Remark. In fact Alice has to partition the positive integers in at least three parts if she wishes
to beat Bob. It is clear that selecting a singe set, namely Z+ will not do as d(Z+) = ∅ and
d(∅) = ∅. Next assume Alice has partitioned the positive integers in two sets A and B. It can
be assumed that d(A) ̸= B and d(B) ̸= A as Bob would win either case. As d(A) is disjoint
from A and B is the complement of A this means that d(A) is a strict subset of B. Hence there
is some b in B that does not belong to d(A). The implication is that b does not divide any
number in A. Similarly there exists a number a in A that does not divide any number in B.
Their product ab belongs to either of the sets A or B and is divisible by both a and b. This
contradicts the existence of said numbers, a and b. In fact we have proven for any subset A of
Z+ that d(A) = Z+ \ A or d(Z+ \ A) = A.

Solution 2
Use the same notation as in solution 1. We wish to construct a partition

⋃
i∈Z+ Ai of the positive

integers, such that no two sets among all sets in {dA1}n∈Z+ , {dA2}n∈Z+ , . . . are equal.
To begin with, consider a partition

⋃
i∈Z+ Pi of the primes, such that each Pi = {pi1, pi2, . . . }

is infinite. We may assume each set is infinite since the set of primes and Z+ × Z+ both are
countable, so there exists a bijection between them. Define the sets

Qi = {pi1, p2i2, pi3, p3i3, p2i4, p4i4, pi5, p3i5, p5i5, . . . },

consisting of pjij, p
j−2
ij , . . . , p

(1,2)
ij for each pij ∈ Pi. By the exponent (1, 2) we indicate that the

last power is 1 when j is odd and 2 when it is even.
We will include the remaining integers {r1, r2, . . . } = Z+\(

⋃
i∈Z+ Qi) to the partition as follows.

First, add r1 to some set Qi1 , such that gcd(r1, q) = 1 for each q ∈ Qi1 . Then, for each k ∈ Z+,
add rk+1 to a set Qik+1

where ik+1 > ik, such that gcd(rk+1, q) = 1 for each q ∈ Qik+1
. Note that

such an ik+1 always exists, since there always is an infinite amount of prime divisors among
Qik+1, Qik+2, . . . , and rk+1 only has a finite amount of prime divisors.
The collection of Qi now forms a partition of Z+. What remains is to show that it satisfies
Alice’s winning condition.
We first see that we may ignore all the rk. By definition, no divisor of rk coincides with any
divisor of Qik , and their contributions in the d-sequence will therefore be completely disjoint.
As d(d({rk})) = ∅, the d-sequence will show no trace of the rk after the second element. Hence,
we will work with the original Qi.
We observe that d(Qi) = {1, pi2, p2i3, pi4, p3i4, p2i5, p4i5, pi6, p3i6, p5i6, . . . }. This is simply Qi with the
indices shifted by 1 and with an added 1. As this set essentially is on the same form as Qi, we
see that {dQi}n consists of every possible shift in indices of the first set Qi (except the element 1
appearing in every other set). It is therefore obvious that the sets in the sequence are pairwise
distinct. Additionally, the set of primes dividing some element in some set of {dQi}n is Pi.
Since the Pi partition the primes, it is clear that all the sets in all the d-sequences of the Qi are
distinct, which is what we wanted.

Remark. The main idea of the problem is to construct a single set S, such that the sets in the
d-sequence of S are pairwise distinct. Any set with similar properties to the Qi should give a
valid initial collection C such that Alice wins.


