The competition takes place in Turku, Finland, November 1st - November 5th, 2006. Participation is by invitation.
The participating teams consist of five contestants, a leader and a deputy leader. The contestants must be secondary school students or possible candidates for IMO 2007.
The Organizing Committee covers the costs of the participating teams in Turku during the time of competition.
The contest consists of solving 20 mathematical problems selected by the Jury. The time for contest is 4 hours 30 minutes. Each team works together and the team members are free to discuss the works between them. Only writing and drawing materials are allowed during the contest, particularly calculators and computers are not allowed. The solutions - at most one for each problem for each team - are to be written on the paper provided by the organizers. Each problem should be answered on a separate sheet and only one side of the paper should be used. The teams can use their own language.
During the first 30 minutes of the competition the teams may present written questions about the proposed problems. The Jury decides how the questions should be answered.
The Jury consists of the team leaders and a chairman appointed by the Organizing Committee. A motion shall be carried by the simple majority of votes. Only the leaders can vote, but in event of the tie, the chairman shall have a casting vote. The deputy leaders may participate in the Jury work, but they are not allowed to vote. If the team leader is unable to participate in the meetings of the Jury her or his rights and duties may be transferred to the deputy leader.
The Jury shall
choose the 20 contest problems from the problems submitted by the participating countries before the contest; the problems can be modified or edited by the Jury;
prepare and approve the translations of the problems to the languages used by the teams;
prepare answers pertaining to the questions raised by the contestants during the first 30 minutes of the competition;
resolve any disputes on scoring between the individual team leaders and the coordinators;
approve the final scores of the teams;
decide on eventual "Special mentions" awarded to the teams of solutions of singular merits.
The solutions of single problems are marked on a scale from 0 to 5 points. The preliminary marking is done by the leader and deputy leader of each team, and the final marking is done by the leader in collaboration with coordinators appointed by the Organizing Committee. If the leader and the coordinators cannot agree on the marking, the problem is considered by the Chief Coordinator. If there is no agreement between the leader and the Chief Coordinator the matter is decided by the Jury.
In the case of a tie for the first, second and third prize the higher number of 5's will be ranked above teams with lower number of 5's. If there is still a tie, the number of 4's will decide the ranking. Then one counts the number of 3's, and then the number of 2's. If there is still a tie, the team having scored the most on the hard problems will be ranked above. This is determined in the following way: Let P(k) be a team's score on problem k, and let T(k) be the total score all teams on problem k. Let Q be the sum P(k)×T(k) taken over all the 20 problems. Teams with lower Q will be ranked above the teams with a higher Q. If there is still a tie, the Jury decides if and how the tie should be broken. In the case of a tie for 4 th - place and lower, no action will be taken to resolve the tie.